Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Transl Cancer Res ; 13(3): 1367-1381, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38617526

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is the most common type and accounts for 90% of all head and neck cancer cases. Despite advances in early diagnosis and treatment strategies-chemotherapy, surgical resection, and radiotherapy-5-year survival remains grim. For patients with early-stage HNSCC, accurately predicting clinical outcomes is challenging. Considering the pivotal role of the immune system in HNSCC, we developed a reliable immune-related gene signature (IRGS) and explored its predictive accuracy in patients with early-stage HNSCC. Methods: We examined immune gene expression profiles and clinical information from 230 early-stage HNSCC specimens, including 100 cases from The Cancer Genome Atlas (TCGA), 49 cases from the Gene Expression Omnibus (GEO; GSE65858), and 81 cases from an independent clinical cohort. The prognostic signature was constructed using Kaplan-Meier analysis and the least absolute shrinkage and selection operator (LASSO) Cox algorithm. We also explored the IRGS-related biological pathways and immune landscape using bioinformatics analysis. Results: A nine-immune-gene signature was generated to significantly stratify patients into high and low-risk groups. High risk patients exhibited shorter survival time [hazard ratio (HR) =13.795, 95% confidence interval (CI): 3.275-58.109, P<0.001]. The signature demonstrated robust prognostic ability in the training and validation sets and could independently predict overall survival (OS) and relapse-free survival (RFS). Subsequently, the receiver operating characteristic (ROC) curve and C-index confirmed the signature's predictive accuracy compared to clinical parameters. Additionally, cases classified as low risk showed more immune cell infiltration than high-risk cases. Conclusions: Our novel IRGS is a reliable and robust classifier for accurate patient stratification and prognostic evaluation. Future studies will attempt to affirm the signature's clinical application to early-stage HNSCC.

2.
NPJ Biofilms Microbiomes ; 9(1): 63, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679355

ABSTRACT

Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , Humans , Anti-Bacterial Agents , Plankton , Signal Transduction
3.
Eur J Med Chem ; 259: 115704, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37544186

ABSTRACT

Limonoids, a class of abundant natural tetracyclic triterpenoids, present diverse biological activity and provide a versatile platform amenable by chemical modifications for clinical use. Among all of the limonoids isolated from natural sources, obacunone, nomilin, and limonin are the primary hub of limonoid-based chemical modification research. To date, more than 800 limonoids analogs have been synthesized, some of which possess promising biological activities. This review not only discusses the synthesis of limonoid derivatives as promising therapeutic candidates and details the pharmacological studies of their underlying mechanisms from 2002 to 2022, but also proposes a preliminary limonoid synthetic structure-activity relationship (SAR) and provides future direction of limonoid derivatization research.


Subject(s)
Limonins , Triterpenes , Limonins/pharmacology , Limonins/chemistry , Triterpenes/chemistry , Structure-Activity Relationship
4.
Int Immunopharmacol ; 117: 109827, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36989973

ABSTRACT

BACKGROUND: Therapeutic options for small cell lung cancer (SCLC), a particularly lethal malignancy, remain limited. Members of the B7-CD28 family are compelling targets for immune checkpoint blockade strategies, which involve activating, inhibiting, and fine-tuning the T cell immune response. However, their clinical features and significance have not been explored comprehensively. METHOD: We enrolled 228 patients with an initial diagnosis of SCLC, including 77 cases from Cbioportal and a validation cohort of 151 cases with qPCR data. Kaplan-Meier analysis and LASSO Cox model were used to identify a signature based on the B7-CD28 family, which was applied for accurate prediction of chemotherapy benefit and prognosis for SCLC patients. In addition, we applied bioinformatics analysis to explore potential signature-related molecular mechanisms and the immune landscape. RESULTS: The mutation profiles of healthy tissues and SCLC tissues were distinct. A signature consisting of seven genes (CD86, ICOSLG, CD276, CD28, CTLA-4, PDCD1, and TMIGD2) was identified and applied to group patients based on risk level (high-risk and low-risk), producing two groups for which survival outcomes differed significantly (HR = 3.81, 95% CI: 2.16-6.74, P < 0.001). The immune checkpoint-based signature accurately predicted patient outcomes for the selected training and validation sets. Notably, low-risk patients were more likely to benefit from chemotherapy and showed greater immune activation. Additionally, time-dependent ROC curves and C-index analysis confirmed that the immune checkpoint-based signature has excellent predictive power for prognosis and chemotherapy benefit compared to clinically recognized parameters. Finally, multivariate analysis confirmed the identified signature as an independent risk factor for prognosis and chemotherapeutic response. CONCLUSION: We systematically obtained a comprehensive molecular profile for B7-CD28 family members in SCLC patients, from which we produced a reliable and robust prognostic immune checkpoint-based signature with the potential to improve prognostic stratification and therapy strategies for SCLC patients.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , CD28 Antigens/genetics , Prognosis , Transcription Factors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , B7 Antigens
5.
BMC Med Genomics ; 15(1): 247, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36447287

ABSTRACT

BACKGROUND: Numerous studies have revealed aberrant DNA methylation in esophageal squamous cell carcinoma (ESCC). However, they often focused on the partial genome, which resulted in an inadequate understanding of the shaped methylation features and the lack of available methylation markers for this disease. METHODS: The current study investigated the methylation profiles between ESCC and paired normal samples using whole-genome bisulfite sequencing (WGBS) data and obtained a group of differentially methylated CpGs (DMC), differentially methylated regions (DMR), and differentially methylated genes (DMG). The DMGs were then verified in independent datasets and Sanger sequencing in our custom samples. Finally, we attempted to evaluate the performance of these genes as methylation markers for the classification of ESCC. RESULTS: We obtained 438,558 DMCs, 15,462 DMRs, and 1568 DMGs. The four significantly enriched gene families of DMGs were CD molecules, NKL subclass, HOXL subclass, and Zinc finger C2H2-type. The HOXL subclass homeobox genes were observed extensively hypermethylated in ESCC. The HOXL-score estimated by HOXC10 and HOXD1 methylation, whose methylation status were then confirmed by sanger sequencing in our custom ESCC samples, showed good ability in discriminating ESCC from normal samples. CONCLUSIONS: We observed widespread hypomethylation events in ESCC, and the hypermethylated HOXL subclass homeobox genes presented promising applications for the early detection of esophageal squamous cell carcinoma.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Methylation , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Protein Processing, Post-Translational , Biomarkers , Homeodomain Proteins/genetics
6.
Mol Immunol ; 128: 89-97, 2020 12.
Article in English | MEDLINE | ID: mdl-33096416

ABSTRACT

There were gender differences in the prevalence and severity of allergic diseases. Group 2 innate lymphoid cells (ILC2s) were recently reported to play a critical role in allergic diseases. We investigated the sex-dependent differences in ILC2-dominant allergic airway inflammation model using T\B cell-deficient mice, and determined the gender differences of ILC2 levels in patients with asthma and allergic rhinitis. Female mice exhibited higher levels of inflammatory infiltration and large production of IL-5 and IL-13, especially for ILC2 levels compared to male mice with the induction of IL-33. However, no significant differences were found for the levels of circulating ILC2s between the genders of patients. The treatment of testosterone significantly decreased the intracellular type 2 cytokines in ILC2s and the proliferation of pure ILC2s in response to epithelial cytokines. Our study suggested the sex differences and the involvement of androgen on ILC2s in allergic diseases.


Subject(s)
Immunity, Innate/immunology , Inflammation/immunology , Lung/immunology , Lymphocytes/immunology , Adult , Allergens/immunology , Animals , Asthma/immunology , B-Lymphocytes/immunology , Cytokines/immunology , Female , Humans , Hypersensitivity/immunology , Interleukin-33/immunology , Interleukin-5/immunology , Male , Mice , Mice, Inbred C57BL , Sex Characteristics , T-Lymphocytes/immunology
7.
Cell Transplant ; 27(3): 571-583, 2018 03.
Article in English | MEDLINE | ID: mdl-29806480

ABSTRACT

Airway epithelial cell injury is a key triggering event to activate allergic airway inflammation, such as asthma. We previously reported that administration of mesenchymal stem cells (MSCs) significantly alleviated allergic inflammation in a mouse model of asthma, and the mmu-miR-21/ACVR2A axis may be involved. However, whether MSCs protect against bronchial epithelial cell injury induced by hypoxia, and the underlying mechanism, remain unknown. In our study, the human bronchial epithelial cell line BEAS-2B was induced to undergo apoptosis with a hypoxia mimic of cobalt chloride (CoCl2) damage. Treatment of MSCs derived from induced pluripotent stem cells (iPSCs) significantly decreased apoptosis of BEAS-2B cells. There was high miR-21 expression in injured BEAS-2B cells after MSC treatment. Transfection of the miR-21 mimic significantly decreased apoptosis of BEAS-2B, and transfection of a miR-21 inhibitor significantly increased apoptosis. More importantly, the protective effects of MSCs on injured BEAS-2B were reversed by transfection of the miR-21 inhibitor. Binding sites of human miR-21 were identified in the 3'UTR of human ACVR2A. We further determined that CoCl2 stimulation increased ACVR2A expression at both the mRNA and protein levels. Moreover, transfection of the miR-21 mimic further up-regulated ACVR2A expression induced by CoCl2, whereas transfection of the miR-21 inhibitor down-regulated ACVR2A expression. In addition, MSCs increased ACVR2A expression in BEAS-2B cells; however, this effect was reversed after transfection of the miR-21 inhibitor. Our data suggested that MSCs protect bronchial epithelial cells from hypoxic injury via miR-21, which may represent an important target. These findings suggest the potentially wide application of MSCs for epithelial cell injury during hypoxia.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line , Humans , MicroRNAs/genetics , Signal Transduction/genetics , Signal Transduction/physiology
8.
Int Arch Allergy Immunol ; 176(2): 124-132, 2018.
Article in English | MEDLINE | ID: mdl-29642055

ABSTRACT

The T helper 2 (Th2)-type response was considered the hypostasis of allergic airway diseases, including asthma and allergic rhinitis (AR). However, more recent studies have suggested that allergic airway inflammation also depends on innate immunity and is closely related to group 2 innate lymphoid cells (ILC2s). This study evaluated the ILC2 levels of asthma subjects, patients with asthma and AR, and healthy individuals, regarding how to investigate the relationship between clinical data and ILC2 levels. It was found that asthma patients and asthma with AR patients had higher ILC2 levels compared to healthy subjects. ILC2s were positively correlated with the percentage of eosinophils in patients with asthma and AR, but not with pulmonary function. ILC2 levels were higher in mild asthma subjects than in patients with severe asthma. This study provides a new interpretation of the pathogenesis of allergic airway inflammation and may provide a new direction for the diagnosis and assessment of allergic airway diseases.


Subject(s)
Asthma/immunology , Eosinophils/immunology , Lymphocytes/immunology , Adult , Asthma/etiology , Asthma/physiopathology , Female , Forced Expiratory Volume , Humans , Male
9.
Clin Immunol ; 183: 293-299, 2017 10.
Article in English | MEDLINE | ID: mdl-28917723

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are essential in initiating and driving allergic immune responses. However, there were inconsistent findings of the ILC2 levels in allergic rhinitis (AR) patients. This study investigated the ILC2 levels in the peripheral blood of house dust mite (HDM)-sensitized AR patients and their ability to secrete type 2 cytokines. The levels of ILC2s with phenotypic ILC2 characteristics were increased in the HDM-AR patients. The AR patients' symptom score and IL-13 levels were positively associated with the ILC2s in HDM-AR patients. The epithelial cytokine stimulation induced dramatic production of IL-5 and IL-13 in PBMCs of AR patients. We successfully sorted ILC2s from AR patients and identified their ability of type 2 cytokines production. The number of ILC2s increased in the HDM-AR patients and ILC2s produced the amount of TH2 cytokines in the presence of epithelial cytokines, which suggested the important role of ILC2 in AR patients.


Subject(s)
Antigens, Dermatophagoides/immunology , Immunity, Innate/physiology , Pyroglyphidae/immunology , Rhinitis, Allergic/immunology , Adult , Animals , Female , Gene Expression Regulation/immunology , Humans , Interleukins/genetics , Interleukins/metabolism , Lymphocytes/physiology , Male , Young Adult
10.
Stem Cell Res Ther ; 8(1): 2, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28057064

ABSTRACT

BACKGROUND: We have previously reported that induced pluripotent stem cell (iPSC)-mesenchymal stem cells (MSCs) alleviated asthma inflammation in mice. Long noncoding RNAs (lncRNAs) were recently reported as being involved in the immune responses. However, whether lncRNAs are associated with iPSC-MSC immunomodulation in allergic inflammation is still unclear. METHODS: Mice were induced into an asthmatic state and received treatment consisting of iPSC-MSCs. Memory T cells isolated from sensitized mice were challenged and co-cultured with iPSC-MSCs in vitro. Total RNA from the lungs and separated T cells were processed with an lncRNA/mRNA microarray. A series of bioinformatics technologies were used to screen the target lncRNAs. RESULTS: iPSC-MSCs significantly prevented asthma inflammation and decreased the Th2 cytokine levels. Over 1300 lncRNAs were differentially expressed after the induction of asthma, and 846 or 4176 lncRNAs were differentially expressed with iPSC-MSC treatment in mice or in vitro, respectively. After overlapping the differentially expressed lncRNAs produced in a similar manner in mice and in vitro, 23 lncRNAs and 96 mRNAs were selected, in which 58 protein-coding genes were predicted to be potential targets of the 23 lncRNAs. Furthermore, using a series of bioinformatics technologies, 9 lncRNAs co-expressed with the most differentially expressed mRNAs, which were enriched in terms of the immune response, were screened out via Pearson's correlation coefficient with mRNAs that were involved with inflammatory cytokines and receptors. lncRNAs MM9LINCRNAEXON12105+ and AK089315 were finally emphasized via quantitative real-time PCR validation. CONCLUSIONS: Our results suggested that aberrant lncRNA profiles were present after asthma induction and iPSC-MSC treatment, suggesting potential targets of allergic inflammation and iPSC-MSC-mediated immunomodulation.


Subject(s)
Hypersensitivity/genetics , Hypersensitivity/therapy , Induced Pluripotent Stem Cells/transplantation , Inflammation/genetics , Lung/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , RNA, Long Noncoding/metabolism , Animals , Cytokines/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Hypersensitivity/complications , Immunomodulation , Induced Pluripotent Stem Cells/cytology , Inflammation/complications , Inflammation/therapy , Mice, Inbred BALB C , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Th2 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...